For the official NumPy documentation visit

NumPy Tutorials

You can find a set of tutorials and educational materials by the NumPy community at NumPy Tutorials. The goal of this page is to provide high-quality resources by the NumPy project, both for self-learning and for teaching classes with, in the format of Jupyter Notebooks. If you’re interested in adding your own content, check the numpy-tutorials repository on GitHub.

Below is a curated collection of external resources. To contribute, see the end of this page.


There’s a ton of information about NumPy out there. If you are new, we’d strongly recommend these:



You may also want to check out the Goodreads list on the subject of “Python+SciPy.” Most books there are about the “SciPy ecosystem,” which has NumPy at its core.



Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.




NumPy Talks

Citing NumPy

If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see this citation information.

Contribute to this list

To add to this collection, submit a recommendation via a pull request. Say why your recommendation deserves mention on this page and also which audience would benefit most.